
Improving the FPGA Design Process Through Determining and Applying
Logical-to-Physical Design Mappings∗

Paul Graham, Brad Hutchings, and Brent Nelson
Department of Electrical and Computer Engineering

Brigham Young University
459 CB, Provo, UT 84602

grahamp@ee.byu.edu, hutch@ee.byu.edu, nelson@ee.byu.edu

Abstract

In this paper we discuss several possible uses of the
knowledge of how user’s logical designs are mapped to
physical FPGA circuits. Some of these uses include power
analyses, useful feedback on physical design implementa-
tions, and direct, quick modifications of physical designs.
As an example of how this knowledge can be used, we de-
scribe, in detail, how to determine the logical-to-physical
mapping of Xilinx XC4000 circuits created with JHDL and
how this mapping and FPGA state sampling, or readback,
enables us to provide a hardware debugging environment
with complete visibility of all flip-flops and LUT RAMs in
executing hardware.

1 Introduction

In supporting hardware debugging in the JHDL [1, 2]
design environment, we have found that knowing how de-
sign elements from the user’s logical design were mapped
to their counterparts in the FPGA physical implementation
is quite important. With only a partial mapping from the
logical to the physical, we would not be able to provide
users of JHDL with a complete view of what their circuit
is doing during hardware execution via FPGAs’ readback
mechanism [3, 4]. Beyond the applications of debugging,
this same knowledge can also be used to provide the de-
signer with a more detailed and understandable view of a
circuit once physically implemented and contribute to im-
proved and more understandable analyses of design char-
acteristics such as dynamic power consumption and critical
path identification.

∗Effort sponsored by the Defense Advanced Research Projects
Agency (DARPA) and Rome Laboratory, Air Force Materiel Command,
USAF, under agreement number F30602-97-1-0222. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon.

As a demonstration of how useful this mapping infor-
mation is, this paper will describe the process of deter-
mining the logical-to-physical mappings for XC4000 cir-
cuits implemented with the Xilinx Alliance and Foundation
software tools and how this mapping is applied to create a
board-independent, device-specific mechanism for debug-
ging hardware in the JHDL environment. As background,
we will briefly review the role of readback in debugging
FPGA circuit designs and why determining the logical-
to-physical mapping is important for debugging hardware
with readback. Next, we will discuss the portion of the
JHDL design flow which applies to hardware debugging,
namely, circuit netlist creation, the processing of Xilinx re-
port files, and the creation of a JHDL readback symbol ta-
ble. Following this, we will discuss how board models in-
teract with and use the JHDL readback API as well as how
FPGA vendor software can improve its support for third-
party tools which need to determine logical-to-physical de-
sign mappings. Lastly, we will describe other possible uses
of this mapping information and summarize several of the
lessons learned from this work.

2 Background

After a designer describes a circuit using a hardware
description language (HDL) or a schematic, the descrip-
tion is usually simulated to verify, to some degree, that the
designed circuit operates as expected. Design verification
through simulation, though, can be very time consuming,
especially, when design errors may not be discovered un-
til millions or hundreds of millions of clock cycles have
been executed; the process can sometimes take hours, days,
or longer. For FPGA-based configurable computing ma-
chines (CCMs), hardware debugging environments can be
used to find and debug the problems much more quickly–
millions or hundreds of millions of cycles may only require
seconds or minutes of execution. Besides the speed bene-

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2000 2. REPORT TYPE

3. DATES COVERED
 00-00-2000 to 00-00-2000

4. TITLE AND SUBTITLE
Improving the FPGA Design Process Through Determining and Applying
Logical-to-Physical Design Mappings

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Brigham Young University,Department of Electrical and Computer
Engineering,Provo,UT,84602

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

11

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

fits, hardware debugging environments can also provide a
greater degree of realism during circuit validation.

One functionality found in many modern FPGAs which
greatly aids the hardware debugging of CCM applications
is the ability to sample, orreadback, the state of the FPGA,
including the values of flip-flops and RAM contents. For
example, with the Xilinx XC4000 and Virtex families of
FPGAs, the values of all user flip-flops, RAMs (LUT and
block), and the combinational outputs of IOBs and CLBs
are available for inspection through readback [3, 4].

Because of the excellent visibility that readback pro-
vides into the operation of circuits, many CCM platforms
have either employed the FPGA readback capability in a
debugging environment or provided at least an application
programmer’s interface (API) for accessing the readback
state of the FPGAs. For instance, the Splash 2 run-time en-
vironment [5] provided both an API as well as a run-time
debugging tool namedt2 which could be used to execute
and debug a design. The tool provided a facility to watch
the values of signals as designs’ clocks were stepped—a
functionality utilizing the Xilinx XC4000’s readback capa-
bility. As another example, the run-time libraries provided
with Annapolis Micro System’s Wildforce boards [6] have
several readback-related API calls for creating and manip-
ulating readback symbol tables as well as for retrieving the
readback data itself.

In our experiences using Splash 2 and Wildforce, the
readback symbol table mechanisms have been very useful
but also limited. At times, signal names would be modi-
fied as the Xilinx tools would optimize the designs, mean-
ing that we would have to go searching through the known
readback symbols to find the new names of the signals we
needed. In other words, the users themselves had to de-
termine the logical-to-physical mapping for some signal
names due to the run-time software’s incomplete knowl-
edge of designs’ logical-to-physical mappings.

This limitation is related to the amount of extra work
required to resolve the logical-to-physical mappings in the
VHDL or Verilog design environments for CCMs. To pro-
vide a comprehensive hardware debugging system for a
CCM run-time system using traditional HDL tools, three
mappings must be determined. First, the synthesis map-
ping of the HDL design to an FPGA vendor’s library must
be understood, which probably involves parsing the netlists
resulting from synthesis and comparing the netlist with the
HDL design. This task is not easy when the synthesis tool
performs many optimizations. Second, a correlation must
be made between the netlist of the synthesized design and
the physical form created by the FPGA vendor’s imple-
mentation tools. The final mapping from the original HDL
design to the physical implementation can be derived from
the first two mappings. Even without the synthesis step,

the relationship between a structural user design and the
physical FPGA implementation is not easy in the presence
of design optimizations made by FPGA vendors’ software.

Instead of determining these mappings, CCM run-time
software generally uses net names as a means of relating
the results of an FPGA readback to the current state of a
user’s design. As an example, early JHDL readback im-
plementations used this approach. JHDL would extract net
name information from themapreport file (.mrp file) and
the logical allocation file (.ll file) created by the Xilinx
FPGA implementation tools. The.mrp file records how
the circuit is mapped to FPGA resources and how it was
optimized during technology mapping. The.ll file, on
the other hand, reports the readback bitstream locations of
the outputs sampled from flip-flops, CLBs, and IOBs as
well as the locations of block and LUT RAM contents in
the readback bitstream. Entries in the.ll file for the sam-
pled outputs of CLBs, IOBs, and flip-flops are annotated
with the name of the nets attached to those outputs in the
physical circuit. Thus, assuming a certain net is connected
to the output of a flip-flop both in the logical design and its
physical implementation, a correlation between the logical
and physical designs can be made. Unfortunately, using
these two files alone in making the association between the
logical and physical can be problematic for several reasons:

• Due to circuit optimizations and hierarchical net name
flattening, it is not always simple or even possible to
relate net names from the original, logical design to
those found in the final, physical design based only
on the information from these files. The.mrp file
reports design changes, including net name changes,
resulting from optimizations performed during tech-
nology mapping, but name flattening for nets crossing
hierarchical boundaries is not reported. This makes
the process of tracking net name changes difficult, if
not impossible, without parsing netlists or otherwise
knowing the exact structure of the original circuit.

• RAM entries in the.ll file are associated with phys-
ical locations on the FPGA alone and not with any net
names. Though the outputs of the CLB are associated
with net names, there are several cases where it is not
possible to determine which output of the CLB cor-
responds to which LUT RAM based on the informa-
tion of these two files. Thus, the net name association
method fails occasionally when associating physical
LUT RAMs to their logical counterparts.

• As with other uses of LUTs, LUT RAMs can have
their address pins permuted by the place and route
tools. This makes relating logical and physical LUT
RAM contents a problem since the.ll and .mrp
files have no information regarding how these inputs

to the RAMs were permuted. As far as we know, this
information is only available in the placed and routed
Native Circuit Description, or.ncd , file and a few de-
rived files.

Considering these short-comings, it is no surprise that most
CCM run-time software packages do not support the read-
back of LUT RAMs. Clearly, this methodology of relating
logical design elements to physical circuit elements can-
not be 100% accurate or complete and another approach is
needed.

Another difficulty of many CCM hardware debugging
environments is that the design, simulation, and execution
environments are different and, potentially, unrelated. For
instance, in some CCM synthesis environments, the simu-
lator and synthesis tools are separate and provided by dif-
ferent CAD tool vendors. As a result of this and the limited
logical-to-physical mapping used by many CCM hardware
debugging environments, some correspondences between
the HDL design and its physical implementation must be
made manually by an experienced designer.

3 JHDL and Hardware Execution

As discussed in [2], the JHDL design, simulation, and
execution environment provides a unified view of a de-
sign’s simulation and hardware execution—they look the
same in the various design views. During simulation, the
simulator itself is responsible for keeping track of the val-
ues and state of the circuit elements in a design. To make
this unified view possible in hardware mode, the sampled
state of the FPGAs from readback is used to recreate the
entire state of the JHDL design within the simulator.

In striving for this unified view of designs, we have de-
veloped a reasonable solution to relating both LUT RAM
and flip-flop state in the readback bitstream to the user’s
design. This was simplified by several factors relating to
both JHDL and the Xilinx FPGA implementation software.
JHDL designs are structural in nature rather than synthe-
sized; this means that at netlist time a complete description
of the circuit is known. As for the Xilinx software, the in-
stance names placed in EDIF netlists are preserved all the
way through the design flow, even down to the placed-and-
routed design found in the.ncd file. These two features
allow a simple one-to-one correspondence to be made be-
tween circuit elements at the logical and physical levels.

The next few sections of the paper will describe the pro-
cess of how we take advantage of these features to correlate
all the state provided by readback to their corresponding
elements in a XC4000-based design. Despite the fact that
our discussion involves JHDL most, if not all, of the tech-
niques we will describe can be used in other FPGA design

methodologies.

4 Creating Designs and Netlists

As discussed in [1, 2], a JHDL user design is de-
scribed in Java using libraries from the JHDL envi-
ronment. The circuit can be described using hier-
archy and generally involves the instantiation of de-
sign primitives which can be either from a technology-
specific or technology-independent library. Technology-
specific library elements directly implement the library
elements found in an FPGA vendor’s design libraries,
while the technology-independent library elements from
thebyucc.jhdl.Logic package instance technology-
specific library elements via the JHDL Techmapper
API, which maps the generic library elements of the
byucc.jhdl.Logic library to the corresponding li-
brary elements of a specific FPGA technology. In addition
to library primitives, a designer can use parameterizable
module generators which create optimized circuits based
on library primitives; commonly used module generators
include adders, multipliers, and counters.

As a result of this structural design methodology em-
ployed in JHDL, we knowa priori how the design will
map to device primitives. With this knowledge and the fact
that instance names are preserved by the Xilinx software,
net names are no longer needed as the primary means of
relating readback information to the user’s design. Instead,
the instance names of flip-flops and RAMs themselves can
be used to make the correlation between readback informa-
tion and the design.

When the design is ready to be implemented using the
Xilinx FPGA tools, the JHDL board models create both an
EDIF netlist of the circuit and a second netlist consisting
only of circuit elements whose state can be sampled. This
second netlist, called an.rbsym file, records the instance
name and the library element name for each circuit element
as well as the names of its input and output ports and the
nets attached to these ports. As far as port and net names
are concerned, only the input ports and net names for LUT
RAMs are actually needed, as we will demonstrate later.

Figure 1 provides sample.rbsym entries for an input
IOB flip-flop (ifdx) and a synchronous 16x1 LUT RAM.

5 Creating Symbol Tables

The most difficult task in making hardware execution
look like simulation to the user is the creation of a sym-
bol table which relates a JHDL circuit element to its
state information found in the readback bitstream. The

/PE1/IOB_Left/ifd-0/ifdx-0 byucc.jhdl.Xilinx.XC4000.ifdx out q /PE1/IOB_Left/ifd-0/q
/PE1/LogicCore/ram16x1s-0 byucc.jhdl.Xilinx.ram16x1s in a<0> /PE1/LogicCore/Count1BufIn<0>

in a<1> /PE1/LogicCore/Count1BufIn<1> in a<2> /PE1/LogicCore/Count1BufIn<2>
in a<3> /PE1/LogicCore/Count1BufIn<3> out o /PE1/LogicCore/RAMOut

Figure 1: Sample entries from an.rbsym file

.edif

.ncd

JHDL
Netlister

.mrp

.rbsym

.xdl

.ll

LUT RAM Addr.
Permutation Mapping .rbentry

Logical to Physical
Component Mapping

Phys. Component to
Bitstream Loc. Mapping

PAR

XDL

Bitgen

Ngdbuild

Xilinx FPGA Tools

XC4KToJHDLSyms

Map

Figure 2: Process of Physical-To-Logical Mapping

XC4KToJHDLSymsclass from the JHDL readback API
performs this task using the information from the.rb-
sym file and three different types of Xilinx files:.ll
files, .mrp files, and.xdl files. The .xdl file used
in our methodology is a textual description of the final,
physical FPGA design and is equivalent to the.ncd file
of the placed and routed design; the file itself is written
in the Xilinx Design Language (XDL). Below we will de-
scribe the important information provided by each of these
files and their roles in constructing the final readback sym-
bol table for hardware execution, or.rbentry file. Fol-
lowing these descriptions, we describe the actual process
of determining the mapping between logical circuit ele-
ments and their physical implementations when generating
an .rbentry file. For convenience, Table 1 provides a
summary of the files used in the process and Figure 2 pro-
vides a graphical representation of the process.

5.1 Determining Readback Bitstream Locations

One type of information needed to create the.rben-
try file is a mapping between a LUT or flip-flop at a
given physical location on the FPGA and the offset for its
state in the readback bitstream. As discussed earlier, the
.ll file provides exactly this information. Additionally,
the net names that are associated with the outputs of flip-
flops, CLBs, and IOBs in the file can now be ignored since
we can develop a one-to-one mapping between JHDL cir-
cuit elements and physical FPGA entities based on instance
names.

Figure 3 provides some sample entries from an
XC4062XL design’s.ll file. The entries are for the out-

put flip-flop of Pad P81’s IOB, an FFX flip-flop in the CLB
located at R47C12, and theF LUT RAM bit with address
15 from the CLB located at R48C12. The first number
in each entry is the absolute offset of the state bit in the
readback bitstream while the following two numbers cor-
respond to the bit’s frame number and frame offset. The
absolute offset is related to the frame number and frame
offset in the following manner for the XC4000 family of
FPGAs:

offsetabs =
(frame size− start bits − stop bits)
·frame number − offsetframe (1)

whereoffsetabs is the absolute offset,frame size is the
size of the configuration frame in bits for the XC4000 fam-
ily FPGA being used,start bits andstop bits correspond
to the number of start bits and stop bits per configuration
frame, andframe number andoffsetframe are, respec-
tively, the frame number and frame offset provided by the
.ll file. For example, in the first.ll entry provided in
Figure 3, theframe size for a XC4062XL is 613 bits [7]
while the number of frame start and stop bits are 1 and 4,
respectively. Thus, the absolute offset is determined as:
(613 − 1 − 4) · 1624− 605 = 986787.

As Eq. 1 demonstrates, the absolute offset does not ac-
count for the start and stop bits for frames. Further, through
trial and error, we determined that the offset also ignores
any header information before the first frame. So, when a
readback bitstream is obtained, we must account for non-
data bits in the bitstream when given an absolute offset
from the .ll file. The following equation provides this

Name Creator Description

.rbsym JHDL Netlist of logical circuit elements for readback

.ll Xilinx, bitgen -l Lists the locations of sampled FPGA state in the readback bitstream

.mrp Xilinx, map Reports design’s mapping to FPGA resources and optimizations

.ncd Xilinx, par Binary, closed description of a design’s FPGA physical implementation

.xdl Xilinx, xdl Textual, open description of a design’s FPGA physical implementation

.rbentry JHDL, XC4KToJHDLSyms Relates logical design elements to locations in bitstream

Table 1: Summary of Files Used for Creating Readback Symbol Tables

...
Bit 986787 1624 605 Block=P81 Latch=OQ Net=PE_Right_Out<8>
...
Bit 1062819 1749 573 Block=CLB_R47C12 Latch=XQ Net=LogicCore/Count1BufIn<0>
...
Bit 1071314 1763 590 Block=CLB_R48C12 Ram=F:15
...

Figure 3: Sample Entries from an.ll File

mapping:

offsetactual = offsetabs

+(
offsetabs

frame size− start bits − stop bits
)

·(start bits + stop bits)
+start bits + header bits (2)

whereoffsetactual is the bit offset used with a readback
bitstream accounting for non-data bits andheader bits are
the number of bits before the start bit of the first bitstream
frame—all other variables are the same as before.

Several additional tidbits of information relating to
readback bitstream offsets are required to handle the map-
ping of logical to physical LUT RAM address bits. The
RAM bit addresses provided in the.ll file are the phys-
ical addresses of the LUTs assuming thatF1 andG1 are
the MSBs for addresses ofF and G LUTs, respectively,
and that the LSBs of the addresses are, of course,F4 and
G4. For 32x1 LUT RAMs, theF LUT contains the first
16 RAM bits (addresses 0–15) and theG LUT contains the
second 16 bits (addresses 16–31); 32x1 LUT RAMs are de-
noted using “RAM=M:<addr>” instead of using the LUT
name as in the example above.

When XC4KToJHDLSyms parses the.ll file, it
records useful readback bitstream entries in one of two
hash tables based on what they represent—RAMs are
recorded in what we will call theLLRAMHashwhile all
flip-flops are placed in theLLBlockHash . The class en-
ters the readback bitstream locations for individual flip-
flops into theLLBlockHash , using the physical locations
of flip-flop outputs as hash keys. Similarly, it places the 16
or 32 bitstream locations for a LUT RAM in a singleLL-
RAMHashentry, using the RAM’s physical location and

RAM depth as a hash key. These hash tables are used later
to relate physical circuit elements to their location in the
readback bitstream.

5.2 Handling Design Optimizations

Since the instance names of a design’s circuit elements
can be used to perform the mapping between its logical and
physical forms, the.mrp file is not needed to perform the
primary logical-to-physical mapping between these forms
as with the mapping method using net names alone. But,
since we still need to be able to take a logical LUT RAM
address from a user’s design and map it to the physical ad-
dress in the final, physical circuit, we are still interested
in the net names connected to the address pins of LUT
RAMs and how their names are modified due to optimiza-
tion. Thus, the.mrp file is still important.

The “Merged Signals(s):” subsection of the.mrp file’s
“Removed Logic” section is the only subsection needed for
keeping track of how net names are modified due to circuit
optimizations. A typical entry in this subsection of the file
is:

The signal "PE_Right_Out<0>" was merged into
signal "LogicCore/Count1BufIn<0>".

The first signal in the entry is the original name of the
signal while the second is its new name. To make net-name
resolution a bit more complicated, the new signal may it-
self be merged into other nets, causing the signal to receive
yet another name. For instance, netA may be merged into
netB, while netB is merged into netC; thus, netA from
the original design has been merged into bothB andC, but
only netC exists in the final physical design. So, several

Find the newName in the MergedSignalsHash;
Find the newName in the MergedToHash;
Find the oldName in the MergedSignalsHash;
if(newName has not been merged into other nets, i.e. it is not in the MergedToHash) {

if(entry for newName doesn’t exist in MergedSignalsHash) {
add entry for newName in MergedSignalsHash;
add oldName to the oldNames list in newName’s MergedSignals object in the

MergedSignalsHash;
}
else {

add oldName to the oldNames list in newName’s MergedSignals object in the
MergedSignalsHash;

}
if(other signals have been merged into the oldName, i.e., oldName has an entry in

the MergedSignalsHash) {
add the oldNames list from oldName’s MergedSignal object to the oldNames list in

newName’s MergedSignal object in the MergedSignalHash;
delete oldName’s MergedSignalHash entry;

}
add a MergedTo entry into the MergedToHash for the oldName;

}
else { /* aliases exist for the new name */

set mergedIntoNet to the name of the net into which the newName was merged using the
MergedToHash entry for newName;

while(mergedIntoNet also has an entry in the MergedToHash) {
set mergedIntoNet to the name of the net into which the last mergedIntoNet was merged;

}
add the old name to the oldNames list in the mergedIntoNet’s MergedSignal object in

the MergedSignalsHash;
if(other signals have been merged into the oldName, i.e., oldName has an entry in

the MergedSignalsHash) {
add the oldNames list from oldName’s MergedSignal object to the oldNames list in

mergedIntoNet’s MergedSignal object in the MergedSignalHash;
delete oldName’s MergedSignalHash entry;

}
add a MergeTo entry into the MergedToHash for oldName referring to mergedIntoNet as

the new name;
}

Figure 4: Pseudo-code for Resolving Net Name Aliases

levels of merging must be handled to determine what some
nets’ final names are.

The XC4KToJHDLSymsclass performs a single-pass
algorithm to determine the final name of nets which have
been merged one or more times. The algorithm uses two
hash tables to quickly perform the name resolution. The
MergedSignalsHash has entries keyed on the new
name for the nets. Each entry is aMergedSignals ob-
ject which associates a new name to a list of old (orig-
inal) net names since several nets can be merged into a
single net. The second hash table,MergedToHash , has
entries keyed on the old names of nets. Each entry is a
MergedTo object which records the new net name for
each old net name. If a signal has been merged into an-
other signal, it has a corresponding entry in theMerged-
ToHash . Pseudo-code for the name resolution algorithm
is provided in Figure 4.

When all of the merged signal entries from the.mrp

file have been added into theMergedSignalsHash ,
multiple levels of net name aliases have been resolved, if
needed, and this hash table can be used to quickly find
the names of the nets into which other signals have been
merged. Specifically, once theMergedSignals object
for a net is found in theMergedSignalsHash , the
oldNames list of that object can be used to discover what
nets have been merged into the net represented by the ob-
ject.

5.3 Associating Physical and JHDL Elements

The last set of information needed to create a readback
symbol table is the final placement, logical names, and
interconnection of the readback entities (RAMs and flip-
flops) in the physical design implemented by the Xilinx
FPGA tools. This information is contained in the placed-
and-routed.ncd file for the design. The format of the

.ncd file is not publicly known, but Xilinx provides a tool
namedxdl to convert the.ncd file into a published, tex-
tual file format called the Xilinx Design Language (XDL)
which retains all of the information of the.ncd file. In
other words, the file describes the configuration of every-
thing on an FPGA in a textual format. To reduce the size
of XDL files, all the information about programmable in-
terconnection points (PIPs) can be turned off since, in our
case, the actual routes taken by nets is not needed to create
our readback symbol table.

As we mentioned earlier, the Xilinx FPGA tools pre-
serve the design’s instance names for each RAM and flip-
flop used in the design, providing an easy, one-to-one
mapping between the physical and logical designs. Since
these names are preserved,XC4KToJHDLSymsrecords
the physical location and both the physical and logical
names of these state elements as it parses the.xdl repre-
sentation of the physical design. In addition, the program
must also record the configuration of theH1 multiplexers
for CLBs, the net names for LUT RAM inputs, and the
configuration of theI1MUX and I2MUX multiplexers of
IOBs. The configuration for each CLB’sH1 multiplexer is
used to determine the net name for the MSB of a 32x1 LUT
RAM’s address. The rest of the input net names for LUT
RAMs are identified by their connections to theF1-F4pins
onF LUTs and theG1-G4pins onG LUTs; the net names
for RAMs are recorded so the permutation of the RAM ad-
dress bits can be determined when trying to map the values
of logical design RAM bits to their corresponding locations
in the physical design’s readback bitstream. The configura-
tion of theI1MUX andI2MUX IOB multiplexers are used
to determine which IOB output is used for the output of the
IOB’s input flip-flop (INFF). This is important since read-
back provides the values of theI1 andI2 IOB outputs and
not the value of theINFF itself.

To simplify the parsing process,XC4KToJHDLSyms
does several things. First, it ignores the information pro-
vided in XDL module definitions since the instance state-
ments in the physical design’s description completely de-
scribe the circuit. Second, since there is no guarantee
based on the published XDL grammar that net statements
will always follow block instances, the program parses the
file twice, recording the configuration of CLBs and IOBs
the first time and then recording the names of the input
nets to LUT RAMs the second time. This allows us to
only record the nets that we are interested in and to asso-
ciate them immediately with the CLB containing the LUT
RAMs. WhenXC4KToJHDLSymshas fully processed the
.xdl file, it has entered all of the FPGA blocks (IOBs
and CLBs) which have either flip-flops or LUT RAMs
into an array, which we will call theXDLBlockArray ;
XC4KToJHDLSymswill use this array during the final

stages of the symbol table creation process.

5.4 Putting it all together

With the data from the.rbsym file created by the
JHDL environment at netlist time and the data from the
three Xilinx files (.ll , .mrp , .xdl), we now have
enough information to create a comprehensive readback
symbol table. The construction of the readback symbol
table takes three additional steps: associating readback bit-
stream locations to each entry in theXDLBlockArray ,
associating the information from theXDLBlockArray
with the logical JHDL design elements from the.rbsym
file, and permuting the readback bitstream locations for
LUT RAM bits. After these tasks have been performed,
the symbol table is written to a.rbentry file for use
with JHDL hardware execution.

To perform the first association,XC4KToJHDLSyms
traverses each entry of theXDLBlockArray . Dur-
ing this traversal, each flip-flop and LUT RAM in each
XDLBlockArray entry is then found in either theLL-
BlockHash or LLRAMHashto determine the readback
bitstream location(s) corresponding to that physical ele-
ment on the FPGA. For CLB flip-flops and IOB output
flip-flops (OUTFFs), this is a simple lookup into theLL-
BlockHash . For aINFF, the configuration of theI1MUX
andI2MUX has to be tested in theXDLBlockArray en-
try to determine which IOB output should be looked up in
theLLBlockHash . For RAMs, theLLRAMHashis used
for determining the readback bitstream locations; since all
16 or 32 locations are recorded in a single entry, only one
lookup is required. At the end of theXDLBlockArray
traversal, each IOB or CLB entry of the array contains the
bitstream locations for the state of their flip-flops or RAMs.

Next, theXDLBlockArray is again traversed, but this
time XC4KToJHDLSymsassociates each RAM or flip-
flop in each entry with a logical JHDL circuit element from
the.rbsym file. When the.rbsym file is read in, a hash
table of logical JHDL readback symbols, which we will
call theRBSymHash, is created, each entry being keyed on
the instance name of the JHDL design elements. For each
flip-flop or LUT RAM contained in anXDLBlockArray
entry, the corresponding logical JHDL symbol is located
in the RBSymHashbased on the instance name recorded
in the .xdl file. When found, the bitstream location cor-
responding to each flip-flop is then recorded in theRB-
SymHash entry. For LUT RAMs, the physical permuta-
tion of the address bits is recorded in theRBSymHashen-
tries in addition to the readback bitstream locations. Since
the logical net names recorded in theRBSymHashentries
and the physical net names recorded inXDLBlockAr-
ray entries are often different due to circuit optimiza-
tions, theMergedSignalsHash is used to check for

net-name equivalences between these two representations
when recording address bit permutations. Once theXDL-
BlockArray has been traversed, all flip-flops and LUT
RAMs which exist in the physical implementation of the
JHDL design have been associated with their logical JHDL
counterpart.

As the last process before writing out the.rbentry
file, XC4KToJHDLSymspermutes the readback bitstream
locations for RAM bits according to the address permu-
tations recorded in the RAM entries of theRBSymHash.
When computing the permutations for XC4000 family
parts, we had to keep in mind several facts about the ad-
dressing of LUT RAMs. First, for 32x1 LUT RAMs, the
input into theH1MUX is the most significant address bit—
it is not permuted with any other address lines by the cur-
rent Xilinx FPGA tools. Further, the permutations for the
address pins of theF andGLUTs are identical both in 32x1
RAMs and dual-ported 16x1 RAMs. Additionally, the first
16 physical LUT RAM addresses in a 32x1 RAM are in
theF LUT while the next 16 are in theG LUT. Lastly, F1
andG1 are the MSBs of physical LUT RAMs’ addresses
when performing the permutations. Though not taken ad-
vantage of in our tools, we also discovered that the ad-
dresses for dual-ported 16x1 LUT RAMs (ram16x1d) are
not permuted at all by the Xilinx FPGA tools.

With the RAM address permutations handled, theRB-
SymHashentries are written out in an.rbentry file for
use by the JHDL hardware execution environment. For
each entry, the type of the symbol (flip-flop or RAM), the
symbol’s JHDL instance name, and the readback bitstream
location of the symbol’s state is recorded in the file. If a
certain logical JHDL flip-flop or RAM has been optimized
away (i.e., no bitstream locations were associated with the
RBSymHashentry), the entry is still written out, but an
indication is made that it was optimized away by the Xil-
inx software. At this point, the.rbentry file we have
created provides a complete mapping of every flip-flop and
LUT RAM found in the design’s physical implementation
to a corresponding design element in the logical JHDL cir-
cuit description.

6 Hardware Execution and Readback

With the ability to generate complete readback symbol
tables, we created a CCM platform-independent, device-
specific readback API for JHDL. Because of its platform
independence, the API can easily be integrated into JHDL
board models and other tools. The key feature which
makes this possible is that the API directly manipulates
“raw” FPGA readback bitstreams, which are only depen-
dent on the FPGA type and not the platform. Though most
FPGA-based platforms have their own APIs for handling

readback, many also provide access to the “raw” readback
bitstreams, making our readback mechanism possible.

Figure 5 illustrates how the JHDL readback API fits in
the JHDL hardware execution environment. The API in-
teracts directly with a JHDL board model (or other tool) as
well as a Java Native Interface to the native board API—an
API often written in either C or C++.

JHDL Readback API JNI Board Interface

Native Board API (C/C++)

Board Device Driver

CCM Board

JHDL Simulator

JHDL Board Model

Figure 5: JHDL Hardware Environment Interactions

There are three aspects with integrating the readback
functionality into a board model or other design tool: the
Java Native Interface (JNI) code for the board, the read-
back management code, and an API call for generating the
.rbsym file for a design. We will discuss each of these
aspects in turn.

The JNI code for interfacing JHDL with the board’s na-
tive API must implement two main functions:

int nativeReadBackPE(int peNum, byte [] bitstream)
This function loads the readback bitstream into the
bitstream byte array for the processing element
(PE) specified bypeNum. An integer indicating
failure or success is returned.

int nativePEType(int peNum, ReadBackPEType peType)
This function loads information about the PE’s type
into the peType object for the PE specified by
peNum. The information provided includes the
FPGA type (XC4062XL, XC4036EX, etc.); the
length of the bitstream’s header, i.e., the number of
bits before the first start bit of the first configuration
frame; and, an indication of whether the MSBs of
the bytes in the array have the lowest or the highest
bitstream offset number within the byte. An integer
indicating failure or success is returned.

These are the only board-specific methods which the read-
back API requires of the board JNI code for readback op-
eration. As Figure 5 suggests, the readback API calls these
JNI functions directly.

The JHDL readback API provides theReadBack-
Manager class for managing readback data. The class
provides methods for:

• adding and removing readback symbols for a specific
PE on the board,

• enabling and disabling readback for a specific PE,

• actually performing readback on the board’s PEs,

• and creating data structures of the readback values so
they can be loaded into the JHDL simulator.

Those who write board models or other JHDL-based tools
do not have to worry about manipulating bitstreams or
making the associations between the JHDL simulation
models and the readback state of the hardware; this is
all performed by theReadBackManager , its supporting
classes, andXC4KToJHDLSyms.

To create the.rbsym netlist of JHDL circuit elements
used byXC4KToJHDLSyms, the JHDL readback API
provides theReadBackSymbolWriter class. When a
board model creates an EDIF netlist for a circuit, it should
also instance aReadBackSymbolWriter object and
call thewriteRBSymInfo method for the same circuit
to create a.rbsym file. Nothing additional is required to
create these netlists.

Currently, we have been using this readback API in our
models for the Annapolis Micro Systems Wildforce fam-
ily of CCM boards as well as ISI’s SLAAC1 family of
boards. From our experience, the JHDL readback API
performs readback with little additional performance over-
head when compared with using just the readback APIs
provided with the boards. Additionally, the memory over-
head for JHDL’s readback API has been on the order of
only a few megabytes for designs with tens of thousands
of readback values. The symbolic readback API cur-
rently provided with the Wildforce boards suffers from a
large amount of memory overhead, requiring as much as
250 MB of RAM for handling an equivalent number of
values—the API was clearly not intended for large num-
bers of readback symbols.

7 Improving FPGA Implementation Tools’
Support for Determining Logical-to-
Physical Mappings

Having wrestled with the task of determining logical-to-
physical mappings for FPGA designs, we have several sug-
gestions that FPGA vendors can follow which can greatly
ease this process:

1. Instance names for nets as well as flip-flops, RAMs,
and other state elements should be preserved as long
as possible during the design implementation pro-
cess (netlist conversion, technology mapping, design
placement and routing, etc.).The fact that the XDL
representation of the placed-and-routed circuit still re-
flected the instance names of these design elements
made their correspondence to the JHDL design almost
trivial.

2. If the design is modified in any way, report it.When
trying to support the readback of LUT RAMs on
XC4000 parts, we discovered that when net names are
flattened across a design’s hierarchical boundaries by
the Xilinx tools, these changes were not reported any-
where, making it hard to track how net names were
changed in the design. As a result, this made it es-
pecially hard to determine the ordering of the address
pins on LUT RAMs since we had no simple way of
relating the names of the nets in the physical imple-
mentation with those of the JHDL design when op-
timizations and net name flattening were performed
by the Xilinx tools. Our work-around for this prob-
lem is to place buffers just before the address pins of
the LUT RAMs to prevent the net names from being
completely flattened. Xilinx’smaptool will optimize
away the buffers and change the net names for the ad-
dress signals, butthese changes are reported, making
it easier to associate the physical net names attached
to the LUTs’ address pins to nets in the JHDL design.1

3. When the state of RAMs can be sampled, the FPGA
vendor tools should provide some method of either
constraining the ordering of the address pins or re-
porting how the address pins were permuted.This
addition alone would have greatly simplified the gen-
eration of readback symbol tables since the net names
of the address signals would no longer be needed. The
second option is probably preferred since it allows the
place and route tools to better optimize the physical
design for speed.

4. Make report files so that they can be easily parsed
by computer software.Making report files available
in human-readable format is important, but providing
some command option for making the reports reason-
able to parse using a grammar would ease the process
of determining logical-to-physical design mappings.
For instance, the.mrp file breaks lines at a set loca-
tion to make the files more readable in a text editor
or other viewer, but the line breaks make the file very

1We consider this approach to be a bit of a “hack”.

difficult to describe with a grammar for compiler tools
such asJavaCCor lex andyacc.

5. Vendors should provide designers with the ability to
fully determine how the FPGA was configured using
an open file format.We found the XDL representa-
tions of XC4000-based designs to be quite important
for creating symbol tables. Without this information,
it would have been hard to determine which IOB out-
put was used for the output of theINFF, which net
was attached to the MSB of a 32x1 LUT RAM’s ad-
dress pins, or how the addresses of LUT RAMs were
permuted. This degree of visibility into the physi-
cal design was crucial for determining the logical-to-
physical mapping of the design and, thus, for creating
a complete and accurate readback symbol table.

8 Other Uses of Logical-to-Physical Map-
pings

Having gone through the exercise of determining how
logical designs are mapped to physical FPGA circuits, we
have come to realize how useful this information really is.
With the information, the design environment can help the
designer better understand how designs were optimized as
well as the characteristics of their FPGA implementations.
For instance, beyond the ability to support hardware de-
bugging in a simulation-like environment, this information
can be used to help estimate the power consumption of cir-
cuits from within the simulation environment—we know
which nets exist in the physical circuit and can monitor
their toggle rates in the simulator. Further, we might be
able to extract capacitance or path length estimates from
the physical design to provide more accurate power mod-
els.

Understanding these mappings also has the potential
to allow quick modifications of designs without having
to go through the complete ASIC-style design cycle over
and over again. As an example, several designs we have
worked on at BYU required only the modification of ROM
contents to change the circuit’s operational parameters.
Through the direct modification of bitstreams via JBits [8]
or an XDL representation of the circuit, these design mod-
ifications would take only minutes not hours to complete,
as can happen when the entire Xilinx FPGA design flow is
used. For that matter, the run-time reconfiguration or mod-
ification of these same circuits becomes easier to perform
and manage with this information.

9 Summary and Future Work

We have discussed the utility of knowing the logical-to-
physical mappings of FPGA circuit designs in the context
of hardware debugging and readback. As an illustration of
their utility, we have discussed a methodology for provid-
ing platform-independent,device-specific support for read-
back in JHDL board models and execution environments.
This API has been successfully used to support board mod-
els for both the Wildforce and SLAAC1 families of CCMs,
providing good performance with little memory overhead.
Since the readback software for JHDL can completely de-
termine the logical-to-physical mappings of JHDL designs,
it can provide developers of JHDL board environments
with a simple way of adding readback capabilities with-
out large amounts of additional coding. The JHDL read-
back API depends on the ability of CCM board APIs to
provide “raw” readback bitstreams from FPGA processing
elements to make platform independence possible.

In the course of the paper, we have also discussed in
detail how to determine the logical-to-physical mappings
of all flip-flops and LUT RAMs in optimized, placed-and-
routed XC4000 designs. Several key factors made this
possible, including the preservation of designs’ instance
names by the Xilinx FPGA tools and the ability to view
the complete configuration of the FPGA using XDL. The
knowledge of how JHDL designs are mapped to Xilinx de-
sign primitives at netlist time also simplified the process.

In the near future, we plan to support these same logical-
to-physical mapping capabilities for the Xilinx Virtex fam-
ily of FPGAs in the JHDL readback API as well as provide
JHDL designers with feedback concerning how their de-
signs were optimized by the Xilinx tools. We also plan
to explore other possible applications of these mappings,
including modeling power in FPGAs, quick design modifi-
cations, and controlling low-level design implementation.

References

[1] P. Bellows and B. L. Hutchings, “JHDL - an HDL
for reconfigurable systems,” inProceedings of IEEE
Workshop on FPGAs for Custom Computing Machines
(J. M. Arnold and K. L. Pocek, eds.), (Napa, CA),
pp. 175–184, Apr. 1998.

[2] B. Hutchings, P. Bellows, J. Hawkins, S. Hemmert,
B. Nelson, and M. Rytting, “A cad suite for high-
performance fpga design,” inProceedings of the IEEE
Workshop on FPGAs for Custom Computing Machines
(K. L. Pocek and J. M. Arnold, eds.), (Napa, CA),
p. n/a, IEEE Computer Society, IEEE, April 1999.

[3] W. Hölfich, “Using the XC4000 readback capability,”
Application Note XAPP 015, Xilinx, XC4000, San
Jose, CA, 1994.

[4] C. Carmichael, “VIRTEX configuration and read-
back,” Application Note XAPP 138, Xilinx, San Jose,
CA, March 1999.

[5] J. M. Arnold, “The Splash 2 software environment,” in
Proceedings of IEEE Workshop on FPGAs for Custom
Computing Machines(D. A. Buell and K. L. Pocek,
eds.), (Napa, CA), pp. 88–93, Apr. 1993.

[6] B. K. Fross, R. L. Donaldson, and D. J. Palmer, “Pci-
based WILDFIRE reconfigurable computing engines,”
in Proceedings of SPIE—The International Society for
Optical Engineering, vol. 2914, (Bellingham, WA),
pp. 170–179, SPIE, SPIE, November 1996.

[7] Xilinx, San Jose, CA,The Programmable Logic Data
Book, 1999.

[8] S. A. Guccione, D. Levi, and P. Sundararajan, “JBits:
A Java-based interface for reconfigurable computing,”
in Second Annual Military and Aerospace Applications
of Programmable Devices and Technologies Confer-
ence (MAPLD), (Laurel, MD), September 1999.

